Envy-free division of multi-layered cakes

WINE 2021 reading group

Zhuming Shi November 17, 2021 Introduction

Preliminaries

Envy-free division using n-1 long knives

Open questions

Thanks!

Authors

(a) Ayumi Igarashi

(b) Frédéric Meunier

Figure 1: Authors

Introduction

- n researchers allocate m meeting rooms over a period of time
- different opinions about the time slot and facility to which they would like to be assigned
- reduce to the one-dimensional case ? failed
- **feasible**: overlapping time intervals to the same agent who can utilize at most one room at a given time
- the multi-layered cake-cutting problem : *n* agents divide *m* different cakes under the **feasibility** constraint: the pieces of different layers assigned to the same agent should be non-overlapping, i.e., these pieces should have disjoint interiors.

Envy-free division of 1-layer cake using Sperner's Lemma

- the divisions into n parallel pieces of lengths $x_i (i = 1, 2, ..., n)$ can be represented by the points of the standard simplex Δ_{n-1}
- vertices of each triangle being labeled as distinct owner agents
- each "owner" agent colors the vertex with the index of their most favorite bundle of the "owned" division

Envy-free division of 1-layer cake using Sperner's Lemma

- agents always prefer non-degenerate pieces to the degenerate one
- a colorful triangle, which corresponds to an approximate envy-free division, is guaranteed to exist by Sperner's lemma

Encode a division with a configuration point $\mathbf{x} \in ||\Delta_{2n-1,n}||$, then **label** all points in configurations space, finally **converge** to a fully labeled point (envy-free division)

Preliminaries

Definitions

- $\bullet \ m$ layers and n agents
- A cake : unit interval [0,1]
- A piece of cake : a union of finitely many disjoint closed subintervals of $\left[0,1\right]$
- A contiguous piece of cakea : a subinterval of $\left[0,1\right]$
- An m-layered cake : a sequence of m cakes $\left[0,1\right]$
- A layered piece : a sequence $\mathcal{L} = (L_l)l \in [m]$ of pieces of each layer l
- a layered piece is contiguous if each ${\cal L}_l$ is a contiguous piece of each layer
- A layered piece \mathcal{L} is non-overlapping if no two pieces from different layers overlap

- A layered piece ${\mathcal L}$ is of zero-length if the piece of each layer is of zero-length
- A multi-division $\mathcal{A} = (\mathcal{A}_1, \cdots, \mathcal{A}_n)$ is a partition of the *m*-layered cake into *n* layered pieces
- \bullet A multi-division ${\cal A}$ is
 - contiguous if A_i is contiguous for each $i \in [n]$
 - feasible if \mathcal{A}_i is non-overlapping for each $i \in [n]$
- Each agent *i* has a choice function *c_i* that, given several layered pieces, selects the preferred layered pieces
- An agent has hungry preferences if she weakly prefers a layered piece of nonzero length to any layered piece of zero-length

An agent has monotone preferences if she always prefers a layered piece $\mathcal{L} = (L_{\ell})_{\ell \in [m]}$ to another $\mathcal{L}' = (L'_{\ell})_{\ell \in [m]}$ whenever L'_{ℓ} is contained in L_{ℓ} for each $\ell \in [m]$.

An agent has closed preferences if the following holds: for every sequence $(\mathcal{A}^{(t)})_{t \in \mathbb{Z}_+}$ of multidivisions converging to a multi-division $\mathcal{A}^{(\infty)}$, we have

$$\mathcal{A}_{j}^{(t)} \in c_{i}(\mathcal{A}^{(t)}) \quad \forall t \in \mathbb{Z}_{+} \qquad \Longrightarrow \qquad \mathcal{A}_{j}^{(\infty)} \in c_{i}(\mathcal{A}^{(\infty)}).$$

The convergence of layered pieces is considered according to the pseudo-metric $d(\mathcal{L}, \mathcal{L}') = \mu(\mathcal{L} \triangle \mathcal{L}')$; a sequence of multi-divisions is converging if each of its layered pieces converges. Here, μ is the Lebesgue measure and $\mathcal{L} \triangle \mathcal{L}' = ((L_{\ell} \setminus L'_{\ell}) \cup (L'_{\ell} \setminus L_{\ell}))_{\ell \in [m]}$.

A multi-division \mathcal{A} is *envy-free* if there exists a permutation $\pi \colon [n] \to [n]$ such that $\mathcal{A}_{\pi(i)} \in c_i(\mathcal{A})$ for all $i \in [n]$. A *birthday cake multi-division* for agent i^* is a multi-division \mathcal{A} where no matter which piece agent i^* selects, there is an envy-free assignment of the remaining pieces to the remaining agents, i.e., for every $j \in [n]$, there exists a bijection $\pi \colon [n] \setminus \{i^*\} \to [n] \setminus \{j\}$ such that $\mathcal{A}_{\pi(i)} \in c_i(\mathcal{A})$ for all $i \in [n] \setminus \{i^*\}$.

Definitions

- Each agent i has a valuation function v_i that assigns a real value v_i(L) to any layered piece L
- v_i satisfies
- monotonicity if $v_i(\mathcal{L}') \leq v_i(\mathcal{L})$ for any pair of layered pieces $\mathcal{L}, \mathcal{L}'$ such that $L'_{\ell} \subseteq L_{\ell}$ for any $\ell \in [m]$.
- the Lipschitz condition if there exists a fixed constant K such that for any pair of layered pieces $\mathcal{L}, \mathcal{L}', |v_i(\mathcal{L}) v_i(\mathcal{L}')| \leq K \times \mu(\mathcal{L} \triangle \mathcal{L}').$
 - A multi-division A is ε-envy-free if different agents approximately prefer different layered pieces

$$\exists \pi : [n] \to [n], \forall i \in [n]$$
$$v_i(\mathcal{A}_{\pi(i)}) + \epsilon \ge \max_{i' \in [n]} v_i(\mathcal{A}_{i,i'})$$

Fig. 1: Multi-divisions of a two-layered cake into three-layered pieces, obtained by one long knife and one short knife and by two long knives (pictured left-to-right).

Envy-free division using $n-1 \log knives$

Theorem 1. Consider an instance of the multi-layered cake-cutting problem with m layers and n agents, $m \leq n$, with closed preferences. If n is a prime power, then there exists an envy-free feasible (i.e., non-overlapping) multi-division obtained by n - 1 long knives.

Chessboard complex

The chessboard complex $\Delta_{m,n}$ is an abstract simplicial complex whose ground set is $[m] \times [n]$

simplices are the subsets $\sigma \subset [m] \times [n]$ such that for every two distinct pairs (i, j) and (i', j') in σ we have $i \neq i'$ and $j \neq j'$

Figure 2: An simplex in complex $\Delta_{5,3}$

- $\bullet \ n=p^k \text{ and } G=(\mathbb{Z}_p)^k$
- arbitrary bijection $\eta:[n]\to G$ (if k=1 we can set $\eta(i)=i)$
- arbitrary injective map $h: \{layers\} \rightarrow G$
- $\Delta_{2n-1,n}$ and $\mathbf{v}_{i,j}$ as vertex (i,j)
- each point of $\|\Delta_{2n-1,n}\|$ encodes a multi-division with n-1 long knives

Encode multi-division with point of $\|\Delta_{2n-1,n}\|$

- $\mathbf{x} \in \|\Delta_{2n-1,n}\|$ arbitrary choose a simplex containing it
- the vertices of the simplex is $\mathbf{v}_{i_1,1}, \mathbf{v}_{i_2,2}, \cdots, \mathbf{v}_{i_n,i}$
- $\mathbf{x} = \sum_{j=1}^{n} x_{i_j} v_{i_j,j}$
- Choose permutation π that $i_{\pi(1)} < i_{\pi(2)} < \cdots < i_{\pi(n)}$

Encode multi-division with point of $\|\Delta_{2n-1,n}\|$

- $x_{i_{\pi(j)}}$ is the length of *j*-th piece in any layer
- bundle name of j-th piece in l-th layer is $\eta(\pi(j))+h(l)$
- $\eta(\pi(j)) + h(l) = \eta(\pi(j)) + h(l')$ if and only if l = l' so no overlap
- $\mathcal{A}(x)=(\mathcal{A}_1(x),\cdots,(A)_n(x)), \mathcal{A}_i(x)$ is pieces with bundle $\eta(i)\in G$

Lemma 1. Let $n = p^k$, where p is a prime number and k a positive integer. Denote by G the additive group $(\mathbb{Z}_p)^k$. Consider a G-invariant triangulation T of $\Delta_{2n-1,n}$. For any G-equivariant labeling of the vertices of T with elements of G, there is a simplex in T whose vertices are labeled with all elements of G.

Lemma 2. There exists a G-invariant triangulation T of $\Delta_{2n-1,n}$ of arbitrary small mesh size, refining $\Delta_{2n-1,n}$, and with an agent labeling $a: V(\mathsf{T}) \to \{\text{agents}\}$ that satisfies $a(g \cdot v) = a(v)$ for all $g \in G$ and $v \in V(\mathsf{T})$.

Lemma 3. Let $(\mathbf{x}^{(t)})_{t \in \mathbb{Z}_+}$ be a sequence of points of $\|\Delta_{2n-1,n}\|$ converging to some limit point $\mathbf{x}^{(\infty)}$. Then $(\mathcal{A}(\mathbf{x}^{(t)}))_{t \in \mathbb{Z}_+}$ converges to $\mathcal{A}(\mathbf{x}^{(\infty)})$.

Theorem 1. Consider an instance of the multi-layered cake-cutting problem with m layers and n agents, $m \leq n$, with closed preferences. If n is a prime power, then there exists an envy-free feasible (i.e., non-overlapping) multi-division obtained by n - 1 long knives.

Proof of theorem 1

- triangulation T and an agent-labeling $a: V(T) \rightarrow \{agents\}$
- partition the vertices of T into their G-orbits
- From each orbit, we pick a vertex v. We ask agent a(v) the index i of the non-overlapping layered piece A_i(x) she prefers in A(v).
- define $\lambda(v) = \eta(i)$
- extend λ on each orbit in an equivariant way:

$$\lambda(g \cdot v) := g \cdot \lambda(v)$$

unambiguously because the action of G on T is free(Sorry, I have not understood this)

Proof of theorem 1

- According to Lemma 1, there exists a simplex of T whose vertices are labeled with all elements of G
- $\forall N \in \mathbb{Z}_+, \exists T := T_N \text{ that mesh size upper bounded by } 1/N(\text{why mesh size} \rightarrow 0?)$
- Denote by $x^{i,N}$ the vertex of this simplex in TN that has $a(x^{i,N})=i \label{eq:alpha}$
- $\pi_N(i)$ the integer $\eta^{-1}(\lambda(x^{i,N}))$
- $N \to \infty$, at least one permutation π_N occurring infinitely many times, denote it as π
- for these N that $\pi_N = \pi$, we have $\mathcal{A}_{\pi(i)}(x^{i,N}) \in c_i(\mathcal{A}(x^{i,N}))$ for all $i \in [n]$ and all such N. Select a infinite sequence from these N and $(x^{i,N})_N$ converges to x^* for all i, then $\mathcal{A}^* = \mathcal{A}(x^*)$ is the envy-free division

Theorem 2. In the case with two layers and three agents with closed, monotone, and hungry preferences, a birthday cake multi-division that is feasible and contiguous exists. Moreover, it requires only one long knife.

Theorem 3. In the case with two layers and three agents whose valuation functions satisfy the Lipschitz condition and monotonicity, for any $\varepsilon \in (0,1)$, an ε' -birthday cake multi-division that is feasible and contiguous where $\varepsilon' \in O(\varepsilon)$ can be found in $O(\log^2 \frac{1}{\varepsilon})$ time. Moreover, it requires only one long knife.

Algorithm 1: Computing an approximate envy-free multi-division

- 1 Initialize $X \leftarrow [0, 1]$ and $Y \leftarrow [0, 1]$;
- 2 while $\max X \min X > 2\varepsilon \operatorname{do}$
- 3 Set $X_1 = [\min X, \mod X]$ and $X_2 = [\mod X, \max X];$
- 4 Compute $d(X_1 \cdot Y)$ and $d(X_2 \cdot Y)$;
- 5 Update $X \cdot Y$ to the one with nonzero degree;
- 6 while $\max Y \min Y > 2\varepsilon$ do
- τ [Set $Y_1 = [\min Y, \mod Y]$ and $Y_2 = [\mod Y, \max Y];$
- 8 Compute $d(X \cdot Y_1)$ and $d(X \cdot Y_2)$;
- 9 Update $X \cdot Y$ to the one with nonzero degree;

10 return $X \cdot Y$;

Open questions

- Even if $n \neq p^k$, p is a prime number, such that n = 6, the envy-free division is still not solved.
- This division of multi-layered cakes problem is formulated just in 2020 IJCAI and only a small setting is solved in this work.
- The problem itself is a big open question.

Thanks!