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€ Introduction

© s-SHUFFLE model

© Represent as polynomials
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Main Contributions

@ Definition of ssSHUFFLE model =M

@ Computation using few rounds can be represented as low-degree
polynomials over the reals. Degree n requires [loggn| rounds

© Lower bound is best result under infinity or polynomial number of
machines

Q Apply to MapReduce

© New machinery for proving lower bounds on the polynomial degree of
Boolean functions
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High level idea

O Firstly, define s-SHUFFLE
© Next, simulate MapReduce in s-SHUFFLE
© Finally, lower bound s-SHUFFLE
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Example 2.1 (Silence Is Golden) Consider the Boolean function
Ei15 : {0,1}° — {0, 1} on three inputs that evaluates to 1 if and
only if exactly one or two inputs are 1. Define E7, : {0,1}° —
{0, 1} as the Boolean function that takes nine inputs, applies F12
to each block of three inputs, and then applies E12 to the results of

the three block's. For i\nstance:
l
e £7,(0,0,1,0,1,0,1,0,0) = E12(1,1,1) = 0;

—_——— —_— $
1

® Efz(O,O,O, 11,0,1,1, 1) — E12(07 170) —

0 ) O —_
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s-SHUFFLE model

Definition 2.2 @) The L -sumof z1,22,...,2m € {0,1, L}

1S: |

e | if exactly one @is 1 and the rest are | ;
e ( if exactly one z; 1s 0 and the rest are L ;
o | ifeveryz;is_L;

° Wd) otherwise.

The 1 -sum of m s-tuples ai,...,an 1s the entry-by-entry _L -
sum, denoted ®;~ 1 a;.
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s-SHUFFLE model

Definition 2.3 (s-SHUFFLE Computation) An R-round s-SHUFFLE
computation with inputs x1, . . ., X, and outputs Yy, . . . , Y has the
following ingredients:

1. A set V of machines, which includes one machine for each
input bit z; and each output bit y;.

2. An assignment of a round@ to each machine v € V. Ma-
chines corresponding to input bits have round 0. Machines
corresponding to output bits have round R + 1. All other
machines have around in {1, 2, ..., R}.

3. For each pair (u,v) of machines with r(u) < r(v), a func-
tion o, from {0, 1, L }*to {0, 1, L}°.
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s-SHUFFLE model

Definition 2.4 (Result of an s-SHUFFLE Computation) The result

of an s-SHUFFLE computation assigns a value g(v) € {0,1, L}°
to every machine v € V, and is defined inductively as follows.

1. For Wne v, correspgnylmg to @n 1nput bit x;,

the value‘ 1s the s-tuple
(:cz, 1, 1,. J_)

2. Given the value g(u) assigned to every machine u with r(u) <
q, the value assigned to a machine v with r v) = q 1S the |-
sum, over all machines u with r(u) < r(v), of the message
v (g(u)) sent to v by u:

;gﬁ) = ®u:r(u)<r(v)<auv(,2@)-> (1)

S —
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MapReduce simulated by s-SHUFFLE(X)

PROPOSITION/2Y7 (SIMULATING MAPREDUCE). EverapReduce computation withm ma>

chines and§pact s per machine cun be simulated by an (r + 1)-round s—SHUFFLE(S.) computation with

'(r + 15m' machinés and word size s.
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Poly representation

low-round s-Shuffle computations with small s can only compute Boolean
functions that can be represented as low-degree polynomials
inframeMapReduce simulated by s-SHUFFLE(X)

Theorem 3.1 Suppose that an s-SHUFFLE computation computes
the function f : {0,1}" — {0,1}* in r rounds. Then there are
k polynomials {p;(x1,...,Tn)}i_1 of degree at most s” such that
pi(x) = f(x);foralli € {1,2,...,k} and x € {0,1}".

The proof splits into some parts.
Nov 20, 2022 12 /14
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PROOF. We proceed by mductlon on the number of rounds. We
claim that for every non-output machine v € V and value z €
{0,1, L}*, there is a polynomial p, (x1,...,x,) that evaluates
to 1 on points x for which the computation’s assigned value g(v)
to v is z and to O on all other points x € {0,1}". Furthermore,

Dv.z has degree at most s”(?),
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Thank you!
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