Shuffles and Circuits (On Lower Bounds for Modern Parallel Computation)

Paper Reading in MPC Reading Group

Authors: Roughgarden, Vassilvitskii, Wang

Speaker: Zhuming Shi

Mentor: Shaofeng Jiang

Peking University MPC Reading Group November 20, 2022

Outline

Introduction

2 s-SHUFFLE model

Represent as polynomials

Authors

from Columbia from Stanford

(a) Tim Roughgarden (b) Sergei Vassilvitskii (c) Joshua R. Wang from Stanford

Figure: Authors

Main Contributions

- Definition of s-SHUFFLE model of MPC
- ② Computation using few rounds can be represented as low-degree polynomials over the reals. Degree n requires $\lceil \log_{s} n \rceil$ rounds
- Apply to MapReduce
- New machinery for proving lower bounds on the polynomial degree of Boolean functions

High level idea

- Firstly, define s-SHUFFLE
- Next, simulate MapReduce in s-SHUFFLE
- Finally, lower bound s-SHUFFLE

Warm Up

Example 2.1 (Silence Is Golden) Consider the Boolean function $E_{12}: \{0,1\}^3 \to \{0,1\}$ on three inputs that evaluates to 1 if and only if exactly one or two inputs are 1. Define $E_{12}^2: \{0,1\}^9 \to \{0,1\}$ as the Boolean function that takes nine inputs, applies E_{12} to each block of three inputs, and then applies E_{12} to the results of the three blocks. For instance:

•
$$E_{12}^2(0,0,1,0,1,0,1,0,0) = E_{12}(1,1,1) = 0;$$

•
$$E_{12}^2(\underbrace{0,0,0,1,1,0}_{0},\underbrace{1,1,1}_{0}) = E_{12}(\underbrace{0,1,0}) = 1.$$

Warm Up

s-SHUFFLE model

Definition 2.2 (\bot -sum) The \bot -sum of $z_1, z_2, \ldots, z_m \in \{0, 1, \bot\}$ is:

- 1 if exactly one (z_i) is 1 and the rest are \perp ;
- 0 if exactly one z_i is 0 and the rest are \perp ;
- \perp if every z_i is \perp ;
- undefined (or invalid) otherwise.

The \perp -sum of m s-tuples a_1, \ldots, a_m is the entry-by-entry \perp -sum, denoted $\odot_{i=1}^m a_i$.

s-SHUFFLE model

Definition 2.3 (s-SHUFFLE Computation) An R-round s-SHUFFLE computation with inputs x_1, \ldots, x_n and outputs y_1, \ldots, y_k has the following ingredients:

- 1. A set V of *machines*, which includes one machine for each input bit x_i and each output bit y_i .
- 2. An assignment of a round(r(v)) to each machine $v \in V$. Machines corresponding to input bits have round 0. Machines corresponding to output bits have round R + 1. All other machines have a round in $\{1, 2, \ldots, R\}$.
- 3. For each pair (u, v) of machines with r(u) < r(v), a function α_{uv} from $\{0, 1, \bot\}^s$ to $\{0, 1, \bot\}^s$.

s-SHUFFLE model

Definition 2.4 (Result of an s-SHUFFLE Computation) The result of an s-SHUFFLE computation assigns a value $g(v) \in \{0, 1, \bot\}^s$ to every machine $v \in V$, and is defined inductively as follows.

- 1. For a round-0 machine v, corresponding to an input bit x_i , the value g(v) is the s-tuple $(x_i, \perp, \perp, \perp, \ldots, \perp)$.
- 2. Given the value g(u) assigned to every machine u with r(u) < q, the value assigned to a machine v with r(v) = q is the \bot -sum, over all machines u with r(u) < r(v), of the message $\alpha_{uv}(g(u))$ sent to v by u:

$$g(v) := \odot_{u : r(u) < r(v)} \alpha_{uv}(\underline{g(u)}). \tag{1}$$

MapReduce simulated by s-SHUFFLE(Σ)

PROPOSITION 2.7 (SIMULATING MAPREDUCE). Every r-round MapReduce computation with ma-chines and spaces per machine can be simulated by an (r+1)-round s-Shuffle(Σ) computation with (r+1)m machines and word size s.

Poly representation

low-round s-Shuffle computations with small s can only compute Boolean functions that can be represented as low-degree polynomials inframeMapReduce simulated by s-SHUFFLE(Σ)

Theorem 3.1 Suppose that an s-SHUFFLE computation computes the function $f: \{0,1\}^n \to \{0,1\}^k$ in r rounds. Then there are k polynomials $\{p_i(x_1,\ldots,x_n)\}_{i=1}^k$ of degree at most s^r such that $p_i(\mathbf{x}) = f(\mathbf{x})_i$ for all $i \in \{1,2,\ldots,k\}$ and $\mathbf{x} \in \{0,1\}^n$.

The proof splits into some parts.

红泡: 于: 少0,13mm 10,13kmm 为不干不能表示的 degree <d m利式, 划至少在5-SHUFFLE上用「logsd7轮计算 (无断谓私器数) 引程: 给您机器 v, - T string Z={0.1,1}s 日 多項式 $P_{v,z}(x) = \begin{cases} 0 & \text{olen} \end{cases}$ A Priz m degree < 5 r(v) 证明:数学归纳注:归纳叶的的值(0~个) 1 round-o noth & v. Z==(Xi,1,1-1) 片 5==(1・丁・丁 一丁) $y_{12} = x_1$ if s == (0,1,1 ---1) Puz = 1-x,

degree = 1, Bit V

(b)
$$(g(v))_{i} == 1$$

$$\sum_{\gamma(u) < r(u)} \sum_{\alpha \in \mathcal{I}} \sum_{\alpha \in \mathcal{I}}$$

上对多4 bit. 柳有 degree $S^{\gamma(v)-1}$ in 制制 到 2 g(v) == 2

H de ree \ S (V) B(Z)

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \Rightarrow V \text{ is output}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$$

$$\Rightarrow f: (0.1)^{n} \rightarrow \{0,1\}^{k} \text{ degree } \geqslant d$$

$$\text{In the proof of the p$$

Proof

PROOF. We proceed by induction on the number of rounds. We claim that for every non-output machine $v \in V$ and value $\mathbf{z} \in \{0, 1, \bot\}^s$, there is a polynomial $p_{v,\mathbf{z}}(x_1, \ldots, x_n)$ that evaluates to 1 on points \mathbf{x} for which the computation's assigned value g(v) to v is \mathbf{z} and to 0 on all other points $\mathbf{x} \in \{0, 1\}^n$. Furthermore, $p_{v,\mathbf{z}}$ has degree at most $s^{r(v)}$.

machine number - independent width ⇒ 机器数学 ① mm = tight(Flogsn) ②加紧数 ply(1) (lower bounded larger than (1099n) for P separate NC1 from P

Thank you!